

## Wireless Magnetometer Vehicle Detector Stations (WMVDS) in District 4

#### **Sean Coughlin**

March 1, 2010

### Caltrans has 12 districts





## District 4 has 9 counties





## Traffic Operations System (TOS)

- Mainline and Ramp Vehicle Detection Stations
- Ramp and Mainline metering
- Changeable Message Signs
- Closed-circuit Television cameras
- Highway Advisory Radio Transmitters and Signs
- Transportation Management Center



#### Mainline Detectors

- 2 directions
- 2.5 stations / mile
- 4 lanes / station
- 2 detectors / lane
- D7 has 7663 (PeMS 2/12/10)



## **Detector Technologies**

- inductive loop
- (wired) magnetometer
- magnetic
- infrared optical
- microwave radar
- ◆video



## Corridor Mobility Improvement Account (CMIA)

- Add mainline VDS to complete detection coverage throughout D4
  - I-80 Solano county
  - I-580 Alameda county
  - US-101 Santa Clara county
  - US-101 Marin / Sonoma counties
  - SR-4 Contra Costa county
  - SR-24 Alameda / Contra Costa counties



## Systems Engineering "V" Model



## Top-Down Method

- Operational needs
- Algorithms
- Data set
  - Parameters
  - Accuracy
  - Precision
- Technologies

highest

lowest



## Big assumption #1

Choose technology and implementation that meets existing data set:

- Lane volume
- Lane occupancy
- Lane average speed



# Why choose wireless magnetometers?

- Ease of installation
  - No saw cutting
  - No service connections
  - Minimal traffic control
- Removable
- Reusable w/ "clamshell" case
- Positive experiences in D4 with wired magnetometers



#### So we leapt in with both feet ...

- 5 construction projects
- \*"stand-alone" VDS
  - Solar power
  - Wireless (GPRS) communication to TMC
  - 1 or 2 VDS / location
- ◆560 VDS operational (1/28/10)



#### From sensor to data

- Presence
  - Input into controller
- Processed
  - Time sample
- Per-vehicle



## Fundamental question #1

How do you know that the data from any detector is good?



## Macroscopic verification

- "Is data reasonable?"
- Legacy Caltrans controller tests
- ◆Jacobson, et al. (TRB, 1990)
- Nihan (Journal of Trans Engr., 1997)
- Other WSDOT



## Microscopic verification

- "Is detector working properly?"
- Chen and May (TRB, 1987)
- Cassidy and Coifman (TRB, 1997)
- Berkeley Highway Lab (1999 )



## Use of microscopic tests

- Validate technologies
  - Type E (circular) loop
  - Microloop
- Validate sensors
  - Model 232E (magnetic)
  - other Model 222 (loop)



#### Detector on-time distribution





#### Detector on-time distribution





## Loops versus WMVDS (2007)



## More microscopic verification

Caltrans Division of Research and Innovation (DRI)

- VideoSync synchronization of detector presence data and video
  www.dot.ca.gov/research/operations/videosync
- "(WMVDS) and Loop Detector Evaluation Report, (2008)







#### Preliminary conclusions:

- "accurate speed trap speeds across all conditions"
- "95+% volume accuracy in the most demanding conditions"
- "occupancy data that's more nosy than properly configured loops"
- "not considered adequate for classification or true Travel Time applications"
- development of revised filtering software that appears to mitigate occupancy problems



## **Questions and Discussion**



